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HYDRODYNAMICAL ASPECTS OF HEAVY-TON COLLISIONS®

A. J. Sierkf and J. R, Nix
W. K. Kellogg Radiation Laboratory
California Institute of Technology, Pasadena, California 91125
and
Theoretical Divisgion, Los Alamos Scientific Laboratory
University of California, Los Alamos, New Mexico 85745

ABSTRACT

In the framework of a hydrodynamical model, we investigate three impor-
tant aspects of heavy-ion collisions: the potential energy of a nucleus as a
function of deformation, the dynamical coupling between collective shape
modes, and the effect of the transfer of collective energy into single-
varticle excitations.

The dependence of potential energy on shape has the effect of preventing
fusion of heavy ions unless the nuclear system can be brought inside its fis-
sion saddle point. For increasing mass number A and angular momentum the
fission saddle-point shape becomes more compact than a touching-ion configura-
tion, leading to a rapid drop of predicted fusior cross sections in the vicin-
ity of A = 200.

For nuclei with A 2 200, the coupling between collective shape modes in-
creases the kinetic energy needed by colliding ions to coalesce to a compact
shape, Thia increases the energy required for fusion.

In addition to exciting collective shape oscillations during heavy-ion
collisions, som= of the initial kinetic energy is convertzd into internal
single-particle excitation energy. We discuss two possible mechanisms for
this conversion: ordinary (two-body) viscosity, which arises from collisions
between individual nucleons, and one-body dissipation, which arises from
nucleon collisions with the moving potential wall. Dynamical calculations
using either of these dissipation mechanisms reproduce experimental fission-
fragment kinetic energies for nuclei throughout the periodic table. Many of
the expcrimentally observed features of strongly damped heavy-ion collisions
are rcproduced by dynamical calculations using relatively small values of the
ordinary two-body viscosity coefficient, although some discrepancies remain.

The analogous calculations using one-body dissipation are not yet done.

*
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1. INTRODUCTION

In studying large-scale nuclear collect{ve motion such as occurs i{in fis-
sion and heavy-ion collisions, one i8 in general both unable and unwilling to
follow in detail the time evolution of the many-body wave function. However,
one usually measures only a few gross features of the reaction products, such
as their masses and charges, kinetic energies, and angles. These quantities
should depend primarily on a few important collective variables that describe
the shape of the nuecleus. Thus one is led to try to model such processes by
solving dynamical equations for a small number of collective degrees of free-
dom, and to lump one's ignorance of the finer details of what is happening
into such concepts as the dissipation of collective energy into excitation
energy.

The simplest type of model which retains many of the features of interest
is a hydrodynamical model, which assumes that the ignored information can be
described by such classical concepts as viscosity, nuclear equation of state,
etc, In this paper we discuss a hydrodynamical model of nuclear col.ective
motion that approximates nuclear matter as an iacompressible, nearly irrota-
tional fluid.l':5 We discuss the three aspccts of the equations of motion —
potential cnergy, kinetic energy, and dissipation — in Secs. 2, 3, and L,
regpectively. In Sec. 5 some calculated results for fission and heavy-ion
collisions are presented and compared to experimental data. Throughout the
paper our primary emphasis is on those qualitative aspects of the results

that do not depend on our specific model,

2. POTENTIAL ENERGY

In calculating the potential energy of nuclel as a function of shape, we
include three macroscopic contributions: nuclear macroscopic energy, Coulomb
energy, and rigid-body rotational energy. We neglect single-particle modifi-
cations to the potential enevgy for several reasons. First, for the moderate
collective energies that wz are considering (~ O.1 to 5 MeV per nucleon), the
resulting excitation energy of the nucleus should decrease the effect of the
single-particle structure. Second, the qualitative effect of these modifica-
tions is to introduce a "ripple" with an amplitude of a few MeV into the
potential-encerpy surface. When superimposed onto the large-scale potentjal-
energy variations caused by the Coulomb. and nuclear energies, these correc-

tions have little influence on the large-scale dynamics except for important



effects near the ground state and fission saddle point., Finally, there is
the important pragmatlic consjderation that the calculatior of single-particle
effects by use of the Strutinsky mcthodh’ﬂ ig too time consuming to be in-
cluded in a dynamical calculation of fission or fusion.

For calculating the nuclear macroscopic energy of the nucleus, we replace
the usuval liquid-drop-model surface energy by a modification that iacludes

€,7 This formulation results

effects of the finite range of the nuclear force.
in a contribution to the ~nergy whose leading shape-dependent term is propor-
tional to the surface area of the nucleus. The additionul correction terms
vanish as the range of the force approaches zero, which means that in this
limit the usual liquid-drop-model surface energy is recovered. The inclusion
of these finite-range corrections leads to a more accurate reproduction of the
energy of highly deformed shapes such as are encountered in the fusion of two
nuclel or during the later stages of fission. The use of the finite-range
energy in dynamical calculations leads to some significant differences8 com-
pared to the l.quid-drop model.

We calculate the Coulomb energy for a uniform-charge-density, sharp-
surfaced drop. Because the second-order surface-diffuseness correction to
the Coulomb energy 18 independent of shapc9 and thc third-order correction is
proportional to the surface area.lo this method takes into account implicitly
the effect of the surface diffuseness on the Coulomb energy to third order in
diffuseness.

For systems with angular momentum, we model its effects approximately by
adding to the Coulomb and macroscopic nuclear potential energies a centrifugal
pscudopotential calculated for a nucleus that is rotating as a rigid bedy.
This approximation includes the important repulsive effect of angular momentum
but neglects totally the effects of coriolis accelerations. The approximation
is good for nearly head-on collisions but is questionable for large impact
parameters.

If one defines a one-dimensional family of shapes, it is possible by use
of these three contributions to the energy to calculate the familiar inter-
action barriers as functions of angular momentum for various systems.7 How-
ever, for discussing the processes of fission and fusion it is iwportant to
consider a multidimensional potential-energy surface. In order to more easily
present this information, we project the results of such multidimensional cal-

2,3,7,11

culations onto a two-dimensional space of central moments. For a



mass~symmetric shape we denote by (zn) the average of 2" over the vight half
of the nucleus, where z is the distance from the plane bisecting the shape.
The center-of-mass separatiun coordinate r 1is then defined by r = 2(z)

and the fragment-elongation coordinate o 1s defined by ~ = 2[((2-(2})2)]%.
For equal spheroidal fragments, r is the distance between their centers of
mass, and ¢ is proportional to the semisymmetry axis of ecach spheroid.

In Fig. 1 we present a contour plot in r-0 space of the macroscopic
potential energy for a 220U nucleus wich zero angular momentum.11 Some of the
more important items on this figure are the two-fragment valley, the shallow
region near the spherical ground state where the neglected single-particle
ceffects would be most important, the fission saddle point at the outlet of
this "ground-state lake,” the sligit ridge scparating the upper fusion valley
from the fission valley, and the location of the tangent-sphere configuration.

For zero angular momentum, the fission saddle point occurs where the
slope of the nuclear energy as a function of increasing deformation is equal
to the negative of the slope of the decreasing Coulomb energy. As one con-
ciders heavier systems, where the Coulomb energy increasingly dominates, the
saddle-point configurations tnerefore grow more compact. This is fllustrated
in Fig. 2, where we piot in r-~g space the locations of the macroscopic-energy
saddle points for various systems. Note how the saddle-point shape is nearly
spherical for heavy nuc.ei, while it is quite elongated for light nuclei.

Of particular impo:rtance is the location of the fission saddle point
relative to the contact point of two ions forming the total system. Note
that when two light ions are brought into contact they are already inside
the fission saddle point, and will thus form a compound system. This is true
for all systems with less than about 200 nuclcons at moderately small bombard-
ing energies. 1In urder to achieve fusion, one has only to bring the ions over
the fusion-valley interaction barrier, which means that a reasonable one-
dimensional model of the potential energy as a function of ion separation will
result in a correct predictica of fusion cross sections for relatively low
energles. In this case, cousideration of the dynamical evolution of the
system after contact is unnecessary.

The effect of angular mom:ntum is qualitatively similar to the effect of
the Coulomb energy. Because the centrifugal potential is repulsive, this
means that increasing the angular momentum of a given nucleus will cause its

fission saddle point to become more compact; There exists a liwiting angular



momentum at which the saddle point disappears (the ground-state shape is the
aame as the saddle-point shape for this value of angular momentum).12 For
angular momenta above this critfcal value, a compound nucleus cannot be
formed, so higher-energy fusion cross sections for intermediate-weight nuclei
are limited by this angular-momentum cutoff.

For systems with more than about 200 nucleons, the situation changes
significantly, with the result that one-dimensional barrier calculations are
irrelevant to fusion. Exirapolation to heavy systems of results from light
ones will be incorrect, because different mechanisms dominate in the different
mass regions. The question of whether or not a particular partial wave will
fuse must be answered by considering the dynamics of the motion ef:er the

ions coms Into contact.

3. KINETIC ENERGY

It is well known that the dynamical evolution of a system is not deter-
mined only by the potential-energy surface. The equations of motion for a
non-dissipative system may be written in a form exhibiting the fact that the
dynamical trajectories are the geodesics of the non-Euclidean space of col-
lective coordinates for which the inertia tensor is the metric.

In our hydrodynamical model, we calculate the inertia tensor by speci-
fying the internal matter flow for a given shape variation. We describe the
nuclear shape by the coordinates q = Qys +es 9, corresponding to the three-

’

quadratic-surfacc shape parameterization. The kinetic energy is then

erual to
. 1 s e 1 2.3
T(q,q) = 3 z Mij(q) 9 qj =3P I v dx .

Here Mij 18 an element of the inertia tensor, hi is the :Ime derivative of
the coordinate 9 P is the mass density of the matter, v is the internal
velocity of the fluid, and the integral is over the entire volume of the
drop. We assume that v is irrotational and approximate the irrotational flow
by means of the Werner-Wheeler mEthod.1’3 Although it 1is known that the
inertia for small-scale motion near the ground state of a cool nucleus is
several times as large as the irrotational value, the inertia for highly
excited nuclei and for large deformation should be closer to the irrotational

7

-
value,'” In addition, for classical systems the irrotational inertia is a

strict lower limit to the corre.t value.13 The results calculated in a



hydrodynamical model obviously depend on the choice of internal flow, but
many of the qualitative features should nevertheless be valid for real
systems.

Because the inertia tensor is non-diagonal and varies with position,
enevpy is coupled between collective mcdes, For example, when two ions
collide, they have all their energy initially concentrated in the rslative

“motion of their centers of mass. As the ions coalesce, the energy is coupled
into various shape oscillations, which reduces the amount of energy in the
relative center-of-mase motion. When added to the repulsive effecta of the
Coulomb and centrifugal energies, this loss of energy in the fusion mode can
prevent fusion from occurring, even when there is no dissipation present.
This effect is due entirely to the nature of the inertia tensor.

In Fig. 3 we plot in r-g space some calculated dynamical trajectories

for nonviscous 11oPd + 110

Pd collisions. The bombarding energy corresponds
to 20 MeV of kinetic energy in the center-of-mass system relative to the top
of the ! = O interaction barrier. We see that the trajectories for low angu-
lar momentum pass inside the corresponding saddle points, but that above

! = 45 the trajectories pass outside the saddle points, with the system
ouickly reseparating without forming a compound nucleus. There ave two
important effects operating: (1) the movement inward of the saddle point as
the angular momentum increases, and (Z) the movement outward of the dynamical
trajectories. This latter effect arises primarily because the rotational
energy decreases the kinetic energy available in the rotating frame of the
nucleus.

We assume that partial waves either lead to compound-nucleus formation or
not depending upon whether their trajectories pass inside or outside the fis-
sion saddle point., The resulting cross section for compound-nucleus formation
is shown as a function of energy in Fig. L. We also show for comparison the
results of a one-dimensional model, where the critical angular momentum for a
given energy is that which just allows the system to get over the one-
¢imensional interaction barrier or for which the effective potential after
contact corresponding to that angular momentum is just attractive.7 We see
that the neglect of deformation effects gives rise to a predicted fusion cross
section about I times as large as that calculated in a model with more than
onc dimension. Finally, the total reaction cross section {s roughly 10 times

the cempound-nucleus cross section,



In Fig. Y we plot the calculated compound-nucleus cross sections as a
function of energy in excesz of the I = O interaction barrier for the systems
200 ~r Nt Is

Po, r"'3OU, and 2”"Fm, which are formed in the symmetric collisions of l"\UMo,

11oPd, and lehSn, respectively. We observe that during the relatively small
change from A = 200 to 2h8, the compound-nucleus cross section drops rapidly,
and the threshoid energy moves significantly above the barrier energy.

We enphasize that the effects considered in this section inhibit fusion
for heavy systems only, but that they apply to systems with zero dissipation.
In the next section we examine the modifications caused by the dissipation of

energy of collective motion into internal excitation energy.

L. DISSIPATION

In principle, if we could solve the exact dynamical equations corre-
sponding to all the nucleons in the nucleus, there would be no dissipation,
since energy is conserved in isolated systems. In the language of Sec. 3, we
would say that all modes are coupled, and we could then investigate the energy
in each mode as a function of time. Because in our hydrodynamical model we
consider explicitly only a few collective variables, we treat all coupling of
energy to short-wavelength collective modes and to single-perticle excitations
as irreversible lose of energy frem the few degrees of freedom being followed
in detail.

The actual method of calculation is to compute and include the Rayleigh
dissipation function in the modified Lagrange equations of the system. The
Rayleigh dissipatiion function is defined by

dEcollective

l 1 L] .

vhere dEcollective/dt is the time rate of change of total energy in the collec-

tive variables considered and qij is an element of the viscosity tensor. The

generalized force in the ith direction due to viscosity is then -% nij ﬁj.
Qualitatively, the effect of dissipation is to slow down the dynamical

motion, change the trajectories from non-dissipative paths in such a manner

as to reduce the arount of dissipation, and to heat up the aucleus. This should

reduce the single-particle effects on the potential energy and inertia, im-

proving the validity of the macroscopic approach, wherein we have neglected

all single-particle structure. The effect on the trajectories may also be

thought of as the influence of the non-diagonal viscosity tensor, which is



analogous to the effect of the inertia tensor disrussed in Sec. 3.

We now address the question of the nature of the dissipation mechanism,
In a classical fluid, the dissipation is due to ordinary shear viscosity,
which acts against gradients in the velocity. On a moleccular level, this
type of dissipation arises from binary collisions between individual mole-
cules, which results in a diffusion of momentum between regions of differing
velocity. We refer to this mechanism as two-body viscosity since it arises
from two-body collisions between the molecules making up the fluid.

Since nucleons are thought to have long mean-free paths in nuclei, this
mechanism of two-body viscosity might not be dominant. An alternative excit-
ation mechanism which can occur in a collisionless classical gas is the trans-
fer of energy to the gas by molecular collisions with a moving wall surround-
ing the gas. This process we refer to as one-body dissipation, since the
energy loss is due to single particles coiliding with the moving wall.lh'18

Deciding whether either of these mechanisms is appropriate for nuclei
might be possible after comparing calculated results to experimental results,
We discuss in the next section some of the results of our dynamical calcula-

tions for nuclei with dissipation present.

5. CALCULATED RESULTS FOR DISSIPATIVE SYSTEMS
Using the method outlined in the preceeding three sections, we calculate
first the most probable dynamical paths from the macroscopic fission saddle

point to infinite fragment separation3 for different values of the two-body

viscosity coefficient p. In Fig. 6 the 2v  kinetic energies calculated
in this model are plotted for several v + 4 as functions cf Za/Al/3 for
nuclei along Green's approximation to the of beta stability.lg The

experimental data for symmetric fission of excited nuclei are also plotted in
this figure. With a single value of viscosity (p = 0.015 + ,005 TP =

9+ 3x 10'2h MeV s/fms), we obtain a good fit to the data, although there
appears to be a systematic variation toward higher viscosity for heavier
systems. This may be due to the neglect of angular momentum in the calculated
results, which would have a greater effect for the lighter systems. The value
of 1.5 X 10lo poise for the two-body viscosity coefficient provides less in-
sight into the effect of viscosity on nuclear dynamics than does the observa-
tion that this value of viscosity is about 30% of the amount required to crit-

fically damp the quodrupole oscillations of an idealized heavy actinide nucleus.



Thus, c:perimental fission-fragment kinctic-energy data are reproduced by a
moderately low valuc of two-body viscosity.

We switch our discussion now to the second type of dissipation mechanism.
For a system initially at rest in thermal equlibrium, the one-body dissipation
rete is proportionai to the integral over the nuclear surface of the square of

the normal velocity cf the surface.”’16

Because of the simplicity of the
viscosity tensor, it is relatively easy to incorporate this model into dynami-
cal calculati.ons.18 However, this approximation becowes unsatisfactory for the
large deformations cncountercd during the later stages of fission, and is
incorrect from the beginning of a heavy-ion collision. Among other inaccura-
cies, this model gives dissipation for simple center-of-mass translatioun., It
is possible to modify this model to eliminate some of its faults,eo but we

have not yet calculated the results of such a modification. Instead, we pre-
sent here the results cor-esponding to the original one-body dissipation for-

mulau 17, 18

This one-body dissipation formula contains no adjustable para-
meters, and for a Fermi-gas model of the nucleus the resulting rate of dissi-
pation corresponds to & very overdamped system. As shown in Fig. 7, this model
of a highly dissipative system also reproduces the exparimental fission-
fragment kinetic-energy data.18
The two types of dissipation exhibit very different effects in arriving
at approximately the same result for the fragment kinetic energies. Two-body
viscosity inhibits neck formation more than elongation, which makes the scis~
sion configuration more elongated than is the case for no dissipation.3 This
configuration has less Coulomb interaction energy and also somewhat less pre-
scission translatinnal kin' tic cnergy than does the nonviscous unes. For the
value p = 0,015 TP, the final kinetie energy at infinity is approximately equal
to the experimental results. One-body dissipation, on the other hand, inhibits
elongation more than neck formation, which leads to a very compact -cission
shape. The dissipation is so high that there is almost no translational kine-
tic energy at scission. However, because the shape is so compact, the Coulomb
interaction energy is much higher than in the nonviscous case. Without the use
of any adjustable parameters, the calculated total energies at infinite frag-
ment separation are almost equal to che experimental ones. The qualitatively
different sciss.on shapes corresponding to the two types of dissipation illus-
trate the strong effect on the dynamics of the form of the viscosity tensor.

As an example of a more complicated heavy-ion-collision process, we now



present a calculation of strongly damped collisions of ehKr with Eognl. In
Fig. G we show the shapes of the system as a Junction of time for €00 MeV
(1ab.) BhKr bombarding 209 Bi with an angular momentum of 200 h, which is near
the grazing angular mementum. The two-body viscosity coefficient has the

value p = 0.015 TP, and the system is started at rest in the rotating reference
frame with a 2.0 fm neck radius at time T = O. The use of this starting condi-
tion corresponds to the colliding nuclei being brought quicily te rest while
maintaining spherical ghapes during the carly stages of neck formation, where
the flow is not expected to be irrotational and incompressible.

The results of two similar calculations for 2 = 0 and ? = 200 h are shown
in Table I, where we also present for comparison some experimental data from
the same teactlon.21 Although deficient in some respects, the calculated re-
sults nevertheless s:ow many of the observed features. To begin with, the
final fragment energy is reproduced quite well with the moderately low viscos-
ity of p = 0.015 TP. However, we must emphasize that we assumed that the
radial motion was stopned before T = O, and have not described a mechanism for
this process. The lcwer-angular-momentum case leads to a lower energy, a
larger masa transfer, and a larger scattering angle, which are all qualita-
tively in agreement with the cxperimental results for a larger scattering
angle. However, the calculated mass transfer is too large, ranging from 24
to L2 amu, an amount to be compared to experimental results of 7 and 23 amu

at center-of-mass scattering anglea of 52° and BGO, respectively.

Table I. Some experimentﬂl and calculatad results for strongly damped colli-
sions of 600 MeV (lab,) 8"Kr on 209p4,*

Experimental Calculated (p = 0.015 TP)
Lab. angle = 34> £ =200 h
Ldb. angle = 59 1 =0
C. M. scattering 52: 55:
angle 86 180
Kinetic energy (MeV) 290 288
275 268

Mass transfer (amu) 7
23 h2




’The experimental kinctic-energy and mass-transfer cntries are for the peak
of the experimental distributions at the corresponding scattering anglcs.”l
The angular momentum value of 200 % was chesen for the first calculation since
it 1s ncar the grazing angular momentum. The near equality of the scattering
angles is fortuitous, since the experimental results could have been pre-
sented for other angles. The value of [ = O was chosen for the scecond cal-
culation to define the maximum range of mass transfer in the calculated col-
lisions. not to try to duplicate the larger-angle experimental results,

Our results are very prcliminary, but unevertheless allow us to make some
comments. First, the erperimental results for strongly damped collisions do
not require that nuclei be very viscous (highly overdamped collective motion).
Second, to reproduce cxperiment:l mass transfers for strongly damped colli-
sions requires a form of dissipation that hinders mass transfer more than

elongation.

6., SUMMARY AND CONCLUSION

We have discussed the three important contributions to the equations of
motion for collective shape variations of nuclei: poteatial energy, kiretic
energy, and dissipation {coupling to noncollective motion). An important
effect of the potential-energy surface is to define the degree of compactness
to which a nuclear system must be driven in order to form a compound nucleus,
The coupling of various collective modes through the shape dependence and non-
diagonality of the inertia tensnr makes it necessary to supplement the infor-
mation of the potential-cnergy surface by solving the dynarmical equations of
the nuclear system., The details of these dynamical couplings are important
in the determination of the collision energy needed to cause complete fusion
of heavy ions,

Dissipative effects cause further modifications of the dynamical trajec-
tories; these modifications are quite different for different mechanisms of
dissipation, We reproduce many of the experimentally observed features of
fission and strongly damped heavy-ion coliisions by calculations in a hydro-
dynamical trecatment that models in a simplified way these three contributions
to the dynamical equations of nuclear systems. However, some discrepancies
remain.,

By waking further detailed comparisons with experimental results, we hope
to cstablish limits to our hydrodynamical model and to possibly determine Lhe
best classical model and the necessary parameters for nuclear dissipation. We

may also use the results of microscopic theorizs to modify the classical model.



This {ncludes, for example, the use of the cranking model to calculate the

inertia tensor, or, as we have already discussed, tie incorporation of finite-
range ccrrections to the liquid-drop-model surface energy. 1t may be possible
to deacribe the overall collective behavior of a large class of rcactions with
a8 simplified modcl that allows us to do calculations with a recasonable amount

of time and effort.
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Fig. 1.

Fig. 2.

F‘.go\ 3.

Fig. &4.

Fig. 5.

Fig. G.

FIGURE CAPTIONS

Potential-cnergy contours for 220U, in units of MeV.ll The scparation
coordinate r s the distance between the centers of mass of the two
halves of the system, and the fragment-elongation coordinate ¢+ 4is the
sum of the root-mean-square extensions along the symmetry axis of the
mass of each half sbout its center of mass. These coordinates are
measured in units of the radius Ry of the sphorical <0y nucleus.

Positions in r-g space of fission saddle points for various nuclear
systems with zero angular momentim. The isotopes chosen are those
which could be formed in @ symmetric binary collision of neutron-rich
beta-stable nuclei. The saddle points for systems with less than
about 200 nucleons are more elongated than the contact point, while
those for heavier systemz are more compact.

Calculuted dynamical trajectories for the reaction 11oPd + 110Pd >

U. The bombarding energy in the center.-of-mass system is 20 MeV
above the maximum in the one-dimensioral zero-angular-momentum inter-
action barrier. The nuclear viscosity coefficient is zero, and sinpgle-
particle effects are neglected. Only those trajectories with angular
momentum £ less than the critical value £y, = 45 pass inside the
fission saddle point for that angulair momentum (indicatud by the
points) and lead to compound-nucleuvs formation.

Compurison of various cross sectiona for the reaction 11OPd 1 110Pd >
U. The results are plotted as functions of the center-of-mass

bombarding energy relative to the maximum in tiie one-dimensional zero-
angular-momentum interaction barrier. 1In the cnergy region below the
arrow in the solid curve the compound-nucleus ciross section is deter-
mined by the requirement that the dynamical trajectory pass inside the
fiesion saddle point, whereas at hlgher energics it is determined by
the angular momentum at which the saddle point disappears. The dashead
curve gives the compound-nucleus cross section calculated {n terms of
a one-dimensional interaction barrier, and the dot-dashed curve givns
the total reaction cross section.

Dependence of the compound-nucleus cross scction upon the ruclear
system. In the energy region below the first arrow in the top curve
the cross section is determined by the one-dimensional interaction
barrier. In the energy region between the two arrows in the top curve
(and below the arrow in the two bottom curves) the cross section is
determined by the requirement that the dynamical trajectory pass inside
the fission saddle point. At higher encrgies the cross scction ic
determined by the angular momentum at which the sadd'e point disap-
pears.

Conarison of experimental most probable fission-fragnent kinetic

¢ . .rgies with results calculated for different values of the two-body
viscosity coefficient u (solid curves). The calculations include
the effect of the finite range of the nuclear force on the nuclear
macroscopic encrgy. The experimental data are for the fission of
nuclei at high excitation energics, where the mosot probable mass divi-
fion is into two equal fragments. The open symbols represent values
for equal mass divisivns only and the solid symbols represent valucs
averaged over all mass divisions. The dashed curves give the calcu-
lated translational kinctic cenergies acquired prior to scission.



Fig. 7.

Fig. 8.

Comparison of experimental most probable fission-fragment kinetic
energics with results calculated for onc-body dissipation. The
strength of the dissipation ls determined from a Fermi-gas model of
the nucleus. This dissipation corresponds to a very overdamped system,
The results for infinite two-body viscosity are shown as a dashed line
to illustrate the different effects of large dissipation in the two
models. The experimental points are the same as in Fig. -,

1
Calculated shapes as a function of time for GUO MeV (1lab.) B‘Kr
bombarding 20934 with an angular momentu. of 200 h. The value of the
two-body viscosity coefficient ¥ 1 = 0,015 TP, At T = O the system

was started from rest in the £ of reference rotating with the
system with a neck radius of 2.¢ 1. The Kr ion was initially inci-
dent from the left side of the & ~, along a path asymptotically
parallel to the iop of the figure. .. indicated in Table I, the final

center-of-mass kinetic energy is 288 MeV, the final center-of-mass
scattering angle is 53° and the final masses of the fragments are
108 and 185 amu,
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